
Constraints-based Query Translation
across Heterogeneous Sources for
Distributed Information Retrieval

Lieming Huang, Ulrich Thiel, Matthias Hemmje, Erich J. Neuhold
GMD-IPSI, Dolivostr. 15, D-64293, Darmstadt, Germany

{lhuang, thiel, hemmje, neuhold}@darmstadt.gmd.de

ABSTRACT: In this paper we propose a method for translating queries across
heterogeneous information sources with widely varying query forms. First, the
query capabilities of specific sources are described while taking into account the
information of various constraints. When translating a query from one source to
another source, we also sufficiently consider the function and position restrictions
of terms, term modifiers and logical operators among the controls in the user
interfaces to the underlying sources, so we can utilize the query capabilities of the
specific sources as much as possible. In addition, we put forward a two-phase
query subsuming mechanism to compensate for the functional discrepancies
between sources, in order to make a more accurate query translation.

1 INTRODUCTION

The number of queryable information sources on the Internet, such as search
engines, search tools, and online repositories, is growing rapidly. The information
explosion makes it difficult for even the most powerful search engine to index all
web pages (there are innumerable local databases that can only be visited through
their query interfaces on the Internet) and to index new and updated pages within a
reasonable amount of time. Thus, sometimes it is difficult to satisfy users’
information needs by only visiting one source. Efficient information integration
systems (IISs, such as meta-search engines, information brokers, agent-based
information systems, multi-databases, and so on) will undoubtedly facilitate users
in acquiring information. Such systems integrate many distributed, heterogeneous
information sources with quite differing query models and user interfaces. In this
paper, we focus on automatic query translation across different sources.
Considering the great diversity of heterogeneous Internet sources, it is certainly a
significant task to design an efficient query mapping mechanism that can
sufficiently coordinate the conflicts between sources.

Suppose that a user wants to search for information as follows: Q: ((Author is
“Charlie Brown”) AND (((“Information Integration” in All fields) AND (Title
contains “query”)) OR ((“Metadata”, “XML”) in Abstract))), published during the
period of 1995 to 1999.

Before discussing how this query can be translated into the formats supported
by several concrete sources, we first briefly introduce the method we have used to
describe the query interfaces and query capabilities of different information
sources. In Fig. 1, we divide all the controls in the query construction user
interface to a source into three groups: (1) classification selection controls, (2)
result display controls, and (3) query input controls.

Fig. 1 Classifying the controls in a query form

A classification selection control is a component in the user interface to an

information source which allows users to select one or more items in order to limit
their information needs to certain domains, subjects, categories, etc.

A result display control can be used by users to control the formats, sizes or
sorting methods of the query results. For example, Sorting Criteria = {<Relevance
ranking>, <Author>, <Date>, etc.}; Grouping Size = {<10>, <20>, etc.}; Results
Description = {<full>, <brief>, <URL>, etc.}.

A query input control is a component in the user interface to a source through
which users can express their information needs (queries). Each query input
control belongs to one of the three types: (1) TERMS. A “term” is the content
keyed into an input box in the user interface to a source. This is different from the
usual meaning of “term”, because a term in our sense can be a single keyword,
multiple words, a phrase, or a Boolean expression. In some cases, the input term
may support wildcards, truncation, or stemming. It may be case sensitive, and
might drop stop-words, hyphens, diacritics and special characters. (2) TERM
MODIFIERS. A “term modifier” is a control in the user interface to a source that
is used to limit the scope, the quality, or the form of a term. For example, we can
divide all term modifiers into two groups: (i) field modifiers: {<Title>, <Full-
Text>, <Review>, < Keywords>, etc.}, (ii) term qualifiers: {<Exactly Like>,
<Multiple Words>, <Using Stem Expansion>, <Phrase>, etc.}. (3) LOGICAL
OPERATORS. A “logical operator” is a control in the user interface to a source
that is used to logically combine two terms to perform a search, the results of
which are then evaluated for relevance. For example, there are four logical
operators: {AND, OR, NOT, NEAR}.

Based on this classifying method, we can describe the query capabilities of
various information sources, especially those with complex, powerful user
interfaces, such as search engines with advanced query input forms, digital
libraries, etc. In the following, we show how the example query Q is posed in two
concrete query interfaces (Figures 2-3) from various sources, thus demonstrating
the great diversity in the query models and user interfaces of heterogeneous
sources, and illustrating the difficulties involved in translating a query from one
source to another.

Fig. 2 NCSTRL Fig.3 ACM-DL

In Fig. 2, two separate fill-out forms of the NCSTRL search engine are shown.

The first form (“Search ALL bibliographic fields ...”) contains only one input box
and a result-sorting criteria pull-down menu. We can put all words and phrases
into the input box. However, the field modifiers (Title, Abstract, Author, etc), term
qualifiers (Exactly like, Using stem expansions, etc), and date range cannot be
expressed in this form, and the search is likely to retrieve irrelevant results with
respect to the original query. The second form (“Search SPECIFIC bibliographic
fields ...”) contains three input boxes (each input box is associated with a single
field modifier: ‘Author’, ‘Title’, and ‘Abstract’), two radio boxes as logical
operators (AND, OR) used to combine the three input boxes, and also a result-
sorting criteria pull-down menu. Compared with the first form, the second form
can better support the query Q. Fig. 3 shows the query page of the ACM-DL with
an input box for users to input keywords (it has several term qualifiers), five check
boxes in which users can select field modifiers (title, full-text, abstract, review,
article keywords), and one author input box.

From the above two figures, we can see that there is great diversity among the
user interfaces and query models of various information sources, and that
translating a query across sources is not trivial. An information integration system
may integrate hundreds or even thousands of information sources. Depending on
some source selection algorithms, the system can choose some sources that are
relevant to a user query and then translate the user query into the formats
supported by these sources. In the next section, we will discuss how such query
translations are carried out.

2. CONSTRAINTS-BASED QUERY TRANSLATION

In this section, we will introduce the process of constraints-based query
translation. Section 2.1 introduces how an original query can be disjunctivized
into several conjunctive sub-queries. Section 2.2 discusses the translation from a
conjunctive query into a single target query and how the common filters and the
special filters are generated and how they work. Section 2.3 gives a detailed
example to explain this translation method. Finally, section 2.4 briefly discusses
the translation from an arbitrary query into several target query expressions.

2.1 Query Disjunctivizing

If a user query contains ‘OR’ logical operators, it can be transformed into
several conjunctive sub-queries (the terms of each sub-query are combined by
AND, NEAR, or NOT logical operators). For example, the query Q can be
decomposed into 2 sub-queries: Q1: ((Author is “Charlie Brown”) AND
(“Information Integration” in All fields) AND (Title contains “query”) AND
(Published during the period of 1995 to 1999)); and Q2: ((Author is “Charlie
Brown”) AND ((“Metadata”, “XML”) in Abstract) AND (Published during the
period of 1995 to 1999)).

In order to explain our query translation method more clearly, we use figures to
express the query capabilities of query forms. For example, query Q1 can be
described as Fig. 4 and the query capability of the second form (See Fig. 2) of the
NCSTRL search engine can be described as Fig. 5.

Fig. 4 Description of Q1 Fig. 5 the second form of NCSTRL

Because each field in Fig. 5 can only be limited by a specific term modifier,

when we translate Q1 into the formats supported by Fig. 5, the second term
(“Information Integration” in All fields) in Q1 can only be mapped into three
concrete fields in Fig. 5: <Title>, <Abstract> and <Author>. So Q1 can be
disjunctivized into three sub-expressions: Q1,1: (T1) AND (T2: Title) AND (T3)
AND (T4); Q1,2: (T1) AND (T2: Abstract) AND (T3) AND (T4); and Q1,3: (T1)
AND (T2: Author) AND (T3) AND (T4). Apparently, the third sub-query Q1,3
contains the term (Authors contain “Information Integration”) and this query will
retrieve nothing.

A query and its disjunctivized sub-queries have the same effects, i.e. the
retrieved results of these two situations are same. Sometimes an original

disjunctive query can be directly mapped into a target query without being
transformed.

2.2 Translation of a conjunctive query into a single target query

Now we discuss the translation of generic query expressions. We suppose that
the original query Qo is a conjunctive query with m (m>0) terms and (m-1) logical
operators (can be ‘AND’, ‘NOT’, or ‘NEAR’) and that the target query Qt is a
query with n (n>0) terms and (n-1) logical operators (See Fig. 6).

Fig. 6 the original query Qo and the target query Qt

When the system translates Qo into Qt, one of the following three cases will

occur. Fig. 7 illustrates these three cases. Now we discuss these three cases
separately and at the same time introduce how the common filters (these kinds of
filters occur frequently and most of them can be applied to refine the results, so we
call them “Common”) and the special filters (these kinds of filters occur not often
and most of them cannot be applied to refine the results, so we call them
“special”) are generated and how they later will be used to post-process the raw
results.

Case 1: In this case, each term in Qo can be put into a certain term in Qt, and

the field modifier and the term qualifier of this term can also be supported by the
corresponding term in Qt. Furthermore, each logical operator in Qo can also be
supported in Qt, and the logical value of the new query is equivalent to the original
query if some terms exchange their positions. For example, (A AND B AND C
NOT D) equals (B AND C AND A NOT D). We call this situation as “Perfect
Match” because the results need not be post-processed. In the following we give a
more detailed description of this case.

For each term To
i in Qo, if the field modifier of this term is one (or a subset) of

the field modifiers of the corresponding term Tt
j in Qt, and the term qualifier of To

i
is one (or a subset) of the term qualifiers of Tt

j, then we consider the following
three situations (otherwise, this translation fails): (a) If Tt

j is empty and the logical
operator Lt

j-1 supports Lo
i-1 (Lt

j-1 can be set as Lo
i-1), then the system can put To

i
into Tt

j, set the field modifier and term qualifier of Tt
j as the corresponding ones of

To
i, and set Lt

j-1 as Lo
i-1. (b) Otherwise, if the term qualifier of Tt

j supports
<Multiple Words> (the term Tt

j can be several words, but not a phrase) and Lt
j-1

equals Lo
i-1, then put To

i into Tt
j. (c) Otherwise, Qo cannot be translated into Qt,

and this translation fails.

If all terms in Qo satisfy situation (a) or situation (b), the translation is
successful. Otherwise, this query will be transferred to the next stage (Case 2) of
the query translation.

Fig. 7 Three cases of query translation

Case 2: Some field modifiers, term qualifiers or logical operators in Qo cannot

be supported by Qt, but after relaxing them (i.e. broadening the scope of the
limitation and therefore enabling that more results may be retrieved), for example,
‘NEAR’→’AND’, <Phrase> → <Multiple Words>, <Title> → <Abstract> →
<Full Text>, etc., the newly-generated Qo can be supported by Qt. In this case, the
IIS dispatches the relaxed query, and when the results come, the system then post-
processes the results according to the previous relaxing information. For the
relaxed field modifiers, term qualifiers and logical operators, the system will use
some filters to record such information and later use them to refine the results in
order to compensate for the relaxing of constraints. We call such filters “common
filters” and call the result refining process as “Tightening” (See Fig. 7). Now we
will discuss some common filters: (1)‘NEAR’→’AND’. Many sources do not
support ‘NEAR’ logical operators. The system uses “A AND B” to replace “A
NEAR B” and generates a new common filter to record this information. After the
results are retrieved, the system uses this filter to select those entries in which term
A and term B are near each other (e.g. within 5 words). If term A and term B are
in the ‘Title’ field, this post-processing is easy, but if they are in the ‘Abstract’
field or even in the ‘Full-Text’ field, the system will consider the cost of analyzing
the content of the source file and then decide whether to post-process it. (2)
‘Phrase’→’Multiple words’. For this case, the system chooses those results that
contain the exact phrase. (3) ‘NOT A’. Some sources do not support the ‘NOT’
logical operator. When translating the original query, the system discards the
‘NOT’ operator and its term and generates a new common filter to record this
information. After the results come, the system uses this filter to remove the
results containing the terms that the original query “NOTted”.

Case 3: In this case, Qo cannot be supported by Qt even after relaxing some

modifiers or logical operators. The system will break Qo into several sub-queries,
then translate and dispatch each sub-query separately. We use special filters to

record such decomposition information (See Fig. 7). When the corresponding
results come, these “special filters” are employed to compose the results.
However, in most cases, either because we cannot obtain relevant information
from target sources or because post-processing will cost unreasonable CPU-time,
it is impossible to post-process broken conjunctive expressions. For example,
suppose that a four-term query is (A AND B AND C AND D) and the target query
only supports two terms. Now we decompose the original expression into two
sub-expressions (A AND B) and (C AND D). If the four terms are limited to the
“Abstract” field or the “Full-Text” field of the publications, we cannot intersect
the two result sets from (A AND B) and (C AND D) because we cannot check
whether a term is in such fields. Even if we can get such information (e.g. by
analyzing the PS, HTML, or PDF source file), such strenuous work is
unnecessary. If the four terms are in the “title” field of the publications, it is
possible to check if each entry from the two result sets contains these four terms.
If the post-processing costs a lot of time, it is better to directly display the raw
results to users.

When translating the original query into the target query, three steps (i.e.

disjunctivizing, decomposing, relaxing) need to be accomplished, in which one or
more of these steps may be skipped depending on the actual situation. When
transferring the results from a source to users, three corresponding steps (i.e.
tightening, composing, merging) will be done. The common filters record the
relaxing information and later will be used to tighten the results. The special filters
record the decomposing information and later will be used to compose the results.

2.3 An Example of Query Translation and Post-processing

Now, we discuss an example of how common filters and special filters are
generated and later employed to post-process the results (See Fig. 8). Suppose
there is a query six-term query Qo: (A NEAR B AND C AND D AND E NOT F),
term A and term B belong to the ‘Abstract’ field, term C belongs to the ‘Author’
field, term D belongs to the ‘Title’ field, term E belongs to the ‘Full-Text’ field
and term F belongs to the ‘Keywords’ field. The target query Qt can only support
two terms and each term can only support the ‘Author’, ‘Title’, ‘Abstract’, and
‘Keywords’ field modifiers, and the ‘AND’ and ‘OR’ logical operators.

Because both term A and term B belong to the “Abstract” field, they can be put
together into an input-box of the target source. Because Qt cannot support the
‘NEAR’ logical operator, the system generates a new common filter CF1:
“NEAR->AND(A, B)” and Qo becomes ((A B) AND C AND D AND E NOT F).
In this query expression, the first term is “A B” (because both the term A and term
B belong to “Abstract” field, they can be put together in an input-box in the target
source. For example, the term A is “XML” and the term B is “RDF”, then the new
term in the input-box can be regarded as two words: XML RDF, not a phrase
“XML RDF”.) and the second term is “C”

Fig. 8 An example query translation

Because the target source can only support two terms, when the system

translates Qo into Qt, Qo will be decomposed (See case 3 in Fig. 7) into three sub-
queries: Qo

1: ((A B) AND C), Qo
2: (D AND E) and Qo

3: (NOT F) and a new
special filter SF1: “(A, B, C), (D, E), (F)” will be generated. Later this special
filter will be employed to compose the three result sets of these three sub-queries.

Because the target source cannot support ‘NOT’ operator, so the sub-query Qo
3:

(NOT F) cannot be sent to the target source. Then a new common filter CF2:
“NOT(F)” is generated and later this filter will be used to post-process the results.
In the following, we will discuss how the system translates Qo

1 and Qo
2 into Qt

separately.
Qo

1 becomes Qt
1. In this Qt

1, the first term is “A B” (because both the term A
and term B belong to “Abstract” field, they can be put together in an input-box in
the target source) and the second term is “C”. When the system translates Qo

2 into
Qt, because Qt cannot support the ‘Full-Text’ field modifier, three new common
filters CF3: “FullText->Abstract(E)” , CF4: “FullText->Keywords(E)” , and
CF5: “FullText->Title(E)” are generated and Qo

2 is transformed into Qt
2: (D

AND E*
1), Qt

3: (D AND E*
2), and Qt

4: (D AND E*
3) repectively. In Qt

2, the term
E*

1 belongs to the ‘Abstract’ field; In Qt
3, the term E*

2 belongs to the ‘Keywords’
field; And in Qt

4, the term E*
3 belongs to the ‘Keywords’ field.

After that, the system dispatches Qt
1, Qt

2, Qt
3, and Qt

4.
When the results of the query Qt

1 return (R1), the system will use the common
filter CF1 (“NEAR->AND(A, B)”) to refine them as Rc1, i.e. choosing those

entries in which term A and term B are near each other within a number of (e.g.,
3) words. When the results of the query Qt

2 come (R2), the system will use the
common filter CF3 (“FullText->Abstract(E)”) to refine them as Rc2 (this filter
will be skipped because the <Abstract> can almost be regarded as a subset of
<FullText>). The common filters CF4, and CF5 are the same as CF3. Then the
system will use the special filter SF1 (“(A, B, C), (D, E),(F)”) to compose the two
results sets Rc1, Rc2, Rc3, and Rc4, i.e. intersecting the two result sets. Finally the
system will use the common filter CF2 (“NOT(F)”) to remove the entries that
contain the term F in the ‘keyword’ field.

2.4 Translation from an arbitrary query into several target queries

In the above we have discussed this situation: the source query is a conjunctive
query and the target source allows only one query expression. However, some
sources provide more than one fill-out form, thus allowing more than one query
expression, for example, NCSTRL supports two forms (See Fig. 2). Sometimes,
the system may distribute several sub-queries from a source query into several
target query expressions when translating the original query. Sometimes an
original query can be directly mapped into the target query without being
disjunctivized. Decomposing a query will increase the number of visits to remote
sources and reduce efficiency. However, for most information sources, query
decomposition is necessary.

3 RELATED WORK AND DISCUSSIONS

With the tremendous development of the Internet and the explosive growth of
digital information, distributed information retrieval on the Internet becomes more
and more important. The challenge of its difficulties and importance attracts the
attention and efforts of many researchers, such as [1-7], to name a few. In the
following, some related work will be discussed.

Papers [2, 3] apply user-defined mapping rules to subsume queries for
translation between different sources. They describe some problems involved in
predicate rewriting, such as the “contains” predicate and word patterns, the
“equals” predicate and phrase patterns, proximity operators, etc. Compared with
their work, we propose a more generic model for translating arbitrary queries
supported by various sources. Our two-phase method for coping with query
subsuming (relaxing and decomposing) and post-processing (tightening with
common filters and composing with special filters) can well coordinate the great
functional discrepancies among heterogeneous information sources. Many papers,
such as [5, 6, 7], describe the query capabilities of sources and deal with the query
translation problem. They discuss more on context-free, conjunctive queries and
do not consider some special constraints, such as the limitations of term modifiers,
logical operators and the order of terms. From Figures 2-3, we know there is great

diversity among sources. Sometimes even a very subtle difference will render the
query translation impossible. Our paper sufficiently describes all kinds of
constraints between the query models (as embodied in the user interfaces) of
various sources, and therefore can utilize the functionality of each source to the
fullest extent. Paper [1] uses Church-Rosser systems to characterize the query
capabilities of information sources and uses “Attribute Preference Ordering” to
realize query relaxing. Paper [4] proposes a scheme called “GenCompact” for
generating capability-sensitive plans for queries on Internet sources. These two
papers try to describe the query capabilities of sources and to translate queries
across sources in a generic view. However, they do not consider some specific
query constraints and do not provide a mechanism to post-process inexact results.
We maintain that the heterogeneity of information sources inevitably renders the
query mapping inaccurate, and that post-processing of results is necessary to make
up for the inaccuracy.

The constraints-based query translation method proposed in this paper can be
applied to all kinds of Internet information integration systems, such as digital
libraries, meta-search engines (especially for specific-purpose), agent-based
information providers, etc.

REFERENCES

[1] S. Adali and C. Bufi. A Flexible Architecture for Query Integration and Mapping.
Proc. CoopIS'98, New York. Aug. 1998, pp. 341-353.

[2] B. Chidlovskii, U. M. Borghoff, and P.Y. Chevalier. Boolean Query Translation for
Brokerage on the Web. Proc. 2nd Int’l Conf. EuroMedia/WEBTEC’98, Leicester, U.K.
Jan. 1998, pp. 37-44.

[3] C. Chang, H. Garcia-Molina, and A. Paepcke. Predicate Rewriting for Translating
Boolean Queries in a Heterogeneous Information System. ACM TOIS 17(1), Jan.
1999, pp. 1-39.

[4] H. Garcia-Molina, W. Labio, and R. Yerneni. Capability-Sensitive Query Processing
on Internet Sources. Proc. ICDE’ 99, Sydney, Australia, Mar. 1999.

[5] A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneneous Information
Sources Using Source Descriptions. Proc. 22nd VLDB. Bombay, India, 1996, pp. 251-
262.

[6] V. Vassalos and Y. Papakonstantinou. Describing and Using Query Capabilities of
Heterogeneous Sources. Proc. 23rd VLDB. Athens, Greece, Aug. 1997. pp 256-265.

[7] R. Yerneni, C. Li, H. Garcia-Molina, and J. Ullman. Computing Capabilities of
Mediators. Proc. SIGMOD, Philadelphia, PA, Jun. 1999, pp. 443-454.

