FROM CONCEPTUAL MODELLING TO ARCHITECTURAL
MODELLING — A UCD METHOD FOR INTERACTIVE SYSTEMS

QINGYI HUA , HUI WANG , CLAUDIO MUSCOGIURI , CLAUDIA NIEDEREE , AND
MATTHIAS HEMMJE *

Abstract. Software design is a process of transformation from problem domain to implemen-
tation domain based on two crucial models: conceptual and system models. User-Centred Design
(UCD) differs from traditional software design in the perspective providing to conceptual modelling.
It concentrates on knowledge about the context of use rather than the accidental features of prob-
lem domain. UCD is also concerned with the integration of that knowledge into the system model
by means of contextualization that allows combining the descriptions of usage with the functional
specifications during the process in order to accomplish a valid design solution. In this paper, we
present the ADOI (Another Dimension of Information) approach that aims at providing support for
contextual development. Due to its declarative specifications ADOI allows explicit conceptualization
of usage, as well as of contextual linkage required for the transformation. A conceptualization- driven
architecture is in ADOI open with respect to different perspectives for the user interface and the
system. As a result, ADOI realizes the role of a complement of existing methods by providing a
development support that can be integrated into different design models.

Key words. User-centered design, conceptual models, Architectural models, Contextual devel-
opment, Software design processes

1. Introduction. A usable interactive system provides its users with useful con-
cepts for solving their problems at hand without becoming bogged down in accidental
features of problem domain [1]. Such usability is difficult to be achieved by a tradi-
tional software process since (users’) goals and system state differ significantly in form
and content, creating the gulfs that need to be bridged if the system can be used [2].
To span the gulfs of usage, an increasing number of people from Human-Computer
Interaction (HCI) and Requirements Engineering (RE) communities are getting a con-
sensus to applying a user-centred perspective for the software design, or user-centred
design (UCD) throughout the software process (e.g. [3], [4], [5]).

It should be aware that UCD is a complement to existing design methods rather
than a replacement for them according to ISO 13407 standard [6]. In other words,
UCD is to model knowledge about the context of use and to integrate that knowl-
edge into existing design models rather than to develop a particular set of models.
Contextual development has been recognized to be crucial for meeting the demands
of user-centred systems design [5], in which the gulfs are spanned with a process of
transformation from usage domain to implementation domain. However, it is still
lacking an effective way of contextualization allowing partitioning and packing differ-
ent perspectives within current UCD approaches, resulting in only less than 30% of
them were used in actual projects in accordance with a recent study [3].

Blum [7] identifies that two models — conceptual and system models — are
commonly used in the traditional software processes for the transformation. The
conceptual model is representation of the problem raised by the users and is carried
out for the purpose of understanding, while the system model (more recently software
architecture [8]) represent a starting point of the software solution for the problem.

Conceptual modelling plays a central role to capture system’s requirements. Rol-
land [4] identifies two sub-types of requirements that have to be modelled. User-
defined requirements arise from people in the organization and reflect their goals,

*Fraunhofer IPSI, Dolivostr. 15, D-64293 Darmstadt, Germany (hua, hwang, muscogiuri,
niederee, hemmje@ipsi.fhg.de).

intentions and wishes. Domain-imposed requirements are facts of nature and reflect
domain laws. This means that the universe of discourse has to be partitioned into
two parts: the usage world and the subject world [9]. The usage world describes the
context in which the system is to be used, or the context of use and consists of the
characteristics of the intended users, their tasks, and the environment. The subject
world describes the context in which the system is to be set up, and consists of real
world objects and behaviours. We argue that there is a third sub-type of requirements,
that is, the contextual linkage that represents the semantic relationships between the
two worlds, which begins to bridge the gulfs between usage and subject features.

There is a third world, that is, the system world [9] that is the world of ar-
chitectural models in which the requirements mentioned above must be addressed.
Traditionally, the architecture of an interactive system has been conceived as its or-
ganization of a presentation and functional layer as a collection of interacting compo-
nents. The components of the functional layer, also called function core (FC), realize
knowledge related to the subject domain that the system is intended to provide. The
components of the presentation layer, also called user interface (UI), are responsible
for users viewing and controlling concepts and relationships related to their tasks.
Coutaz [12] identifies a third layer, a mediator that specifies a protocol for control
strategy and data exchange between the Ul and the FC. The role of the mediator is to
act as a contextual mechanism that represents the state of the FC in terms relevant to
the user tasks but the representation is still presentation-independent, and transforms
the user tasks into the actions of the FC. Modelling the mediator explicitly bridges the
gulfs further towards a valid software solution, which requires the knowledge about
the contextual linkage.

Obviously, UCD requires both of the contextual linkage between the two worlds
and the mediator that deliver the linkage to design models. In this paper, we present
the ADOI (Another Dimension of Information) approach that aims at providing sup-
port for contextual development. Due to its declarative specifications ADOI allows
explicit conceptualization of usage, as well as of contextual linkage required for the
transformation. ADOI contains conceptualization-driven architecture to cope with
knowledge allocation with respect to functionality of the UI and the FC, as well as
the contextual linkage between them. As a result, ADOI realizes the role of com-
plement by providing a development support with the integration of different design
approaches.

This paper is structured as follows. We identify first which concepts in the two
worlds are required for specifying relationships between the users’ goals and the system
functionality in section 2. We introduce our approach and demonstrate an example
in section 3. Finally the conclusions are presented in section 4.

2. Conceptual models for contextual development. A conceptual model
is a collection of concepts and their relationships, which embodies people’s shared
understanding for some perspective with respect to some domain of interest. The
traditional way of conceptual modelling is to understand and represent features (i.e.
entities and behaviours) of problem domain from a system’s perspective. It concen-
trates on what the envisioned system should do, or on its functionality by means of
domain and functional models (e.g. object and use-case models in UML [13]). These
models are unable to model users’ knowledge about problem-solving goals, although
they are necessary for modelling the information maintained and the functionality
provided by the system.

Instead of modelling the concepts of entities and behaviours in the problem do-

main, conceptual modelling in UCD explores the users’ goals and their activities to
meet these goals in order to achieve a usable system. To provide a user-centred per-
spective, various task-based models have been proposed for the representation of these
activities. For example, some approaches have proposed goal-based use-case models,
e.g. [10], [14]. Unlike use-case model in UML, goal-based models can be qualified as
user-centred since goal cases are described around goals with respect to users’ con-
cepts. When considering the process of transformation, however, it turns out that
a use case is delivered for a given set of features and the features cross multiple use
cases, making the tracking more complicated [10]. To span the semantic distance be-
tween the goals and features, a goal case must be refined as a set of traditional use
cases before the architectural specification can be specified. This is typically not a
user-centred way. On the other hand, task models in HCI (e.g. [11]) demonstrate a
similar problem. They attempt to decompose a task down to the primary forms of the
task in order to provide a connection between the task and the actions that realize
the task in the problem domain.

In fact, the rationale of contextual development requires a combination of both
perspectives. On the one hand, it requires explicating the meaning of a user task with
the users’ concepts. On the other hand, it also requires connecting the meaning with
the system’s concepts. It implies that objects in the information space with respect
to the universe of discourse have to be partitioned into two sub-types: conceptual
objects in the usage world, and domain objects in traditional sense in the subject
world. Conceptual objects in this sense represent the state of the domain objects in
concepts meaningful to the users.

User Tasks
Conceptual Contextual links Domain
Objects Objects

FiG. 2.1. The relationship between the two perspectives

As shown in Fig. 2.1, in this paper we define a use task is a mapping relation
over conceptual objects rather than over domain objects, whereas a contextual link
specifies a collection of mapping relations, or semantic operations, from conceptual
objects to domain objects. These semantic operations interpret the user task over the
domain objects and thus, the semantics of user tasks are declarative both for the users
and developers. In this way, we can describe a goal as a state of conceptual objects
that a user wishes to achieve in the future. Hence, the meaning of the corresponding
task can be mapped to the state. We can also discuss tasks more abstractly without
becoming bogged down to implementation details by dealing with state transitions.

In the remainder of this paper, we use goal cases to specify tasks and goals in
terms of the definition, in which each of user inputs and system outputs is specified
over the conceptual objects. We also use semantic mappings from the conceptual
objects to the domain objects, which links the two sets of objects contextually. As
a result, the task performance could be conceived of as a transition from the current
state of conceptual objects to the goal state. Actually it is the application of the
semantic mappings over domain objects, which makes the transition.

3. The ADOI approach. The ADOI approach aims at supporting the process
of contextual development from conceptual models to architectural model to realize
the users’ goals in a declarative way.

The usage world
Role model

Conceptual
Object model

Task model \
Architectural
Model

The system
Contextual Domain
Link model Object model /

The subject world

Fic. 3.1. The ADOI framework of models

As shown in Fig. 3.1, the ADOI approach provides a framework comprising the
models for the understanding and representation of the corresponding worlds that
the models are assumed to support. The purpose of the framework is to explicate
the relationships among the models under the assumptions over each component of
the models. The arrows in Fig. 3.1 show the dependency relationships between the
models, which means that a model has to be changed if a model it depends on is
changed.

In the following we discuss the concepts and their relationships modelled by these
models. We demonstrate the usage of these models with a simple hotel reservation
example in [15].

3.1. Role model. Conceptual modelling for the usage world means understand-
ing and modelling the people who are involved in affairs. For understanding the usage,
the roles that users play can be more important than the users themselves [14]. A role
represents a collection of common features abstracted from actual users who might
interact with the system with similar goals. Unlike an active object, the characteris-
tics of a role rely on its psychological aspects. A role can have attributes that specify
knowledge, skill, experience, education, training, responsibility, etc. A role can also
have behaviour when interacting with the system. As a result, a role is not only a
meaningful collection of tasks performed by one or more agent [11]. It is also related
to a set of conceptual objects that reflect the role’s understanding of the usage.

A role model in ADOI is composed of a collection of roles and the relationships
between them. A role is a collection of goals that represent the state the person
wishes to achieve [2]. Roles can be involved in a type hierarchy that specifies the
generalization of goals.

Fig. 3.2 illustrates the main artefact of the role model for the hotel reservation
example. It shows the roles involved in the affair of reservation. The association
between the customer and the clerk is many to one, implying the clerk can serve
multiple customers, but a customer is assigned to one clerk.

3.2. Task model. A significant activity in conceptual modelling is to analyse,
identify and specify tasks to be performed by roles. Task modelling for contextual
development requires this activity to be centred on the users’ goals, and later the
meaning of the tasks is interpreted from a system’s perspective, both in a declarative
way.

In ADOI, a distinguishable characteristic is to separate the description of tasks

N %4

’Customer }—{ Clerk ‘
* 1

Fic. 3.2. A role model for the example application

from their references to domain features by introducing a task model and a contextual
link model. Achieving the separation depends on our definition of goals and tasks in
section 2. We assume the state of the envisioned system is determined in terms of
conceptual objects rather than of domain objects. The role of contextual links is to
map the state of conceptual objects to domain objects. As a consequence, tasks are
performed over conceptual objects rather than domain objects.

‘:eresewaﬁo ”’

Customer

Fic. 3.3. A use-case model for the representation of user tasks

Customer Clerk

Present request Ask availability Check availability

No availability

Request preference

Ask preference I>(Check preference

Govide preferen@—}(Make reservation

Confirm reservation

Present preference

No preference

[1
Ll

Get confirmation

K

o

Fic. 3.4. A workflow for the ‘make reservation’ task

ADOTI uses a goal-case model to describe tasks and their relationships. However,
our goal cases refer directly to the state of relevant conceptual objects rather than
to the one of domain objects that suffers from the problem with semantic distance
as mentioned earlier. Such problem will not appear in our case according to the task
definition. In this way, we can reuse the original form of use-case model in UML
without any extensions and/ or constraints, but on a consistent level towards the
users’ goals with respect to the users’ concepts.

A use case in ADOI includes a name specifying a task, and a collection of at-
tributes, such as goal, pre-/post-condition, significance, frequency, etc. A use case
can be in a generalization hierarchy. Use cases can have ¢ include’ and ‘extend’ re-
lationships [13]. Fig. 3.3 and Fig. 3.4 illustrate the main artefacts of the task model
for the hotel reservation example. Fig. 3.3 shows the use-case diagram that specifies
the tasks and their relationships with the roles. Fig. 3.4 shows an activity diagram
detailing the ‘make reservation’ use case. Verbs in Fig. 3.4 are used for specifying the
customer and the clerk tasks, and the system responses. Nouns in Fig. 3.4 are used
for specifying conceptual objects. It is easy to see that the use case is described from
a user’s perspective, and maintain a linear relationship over the conceptual objects.
The system responses in Fig. 3.4 provide then meanings for the clerk’s tasks from a
user’s perspective and, hence, have to map to domain features, which we will discuss
in section 3.5.

Availability
2 %
] <,
&3 &
R] 2
2)
3¢ < Y
& S %
Customer
S
&
Reservation (‘\a bas Preference
determines

Fia. 3.5. A conceptual object model for the ‘make reservation’ task

3.3. Conceptual object model. The conceptual-object model in ADOI con-
tains objects and relationships among the objects. A conceptual object is an intangible
thing in a user’s mind and, hence, belongs to the usage world. Conceptual objects
are often closely related to user tasks. As a result, modelling tasks and discovering
conceptual objects is an iterative process.

Fig. 3.5 shows a class diagram for the ‘make reservation’ use case. The conceptual-
object model contains classes that are significant from a user’s perspective. Some of
these classes may not be realized in the system design. For example, the customer’
class is important from a clerk’s perspective, but it may be an attribute of the class
‘reservation’ in the system design. This is similar to the relationship between a domain
model and the system design.

Hotel Customer

1 0.*
1#‘ !
1

Reservation Bill

n

Room

F1c. 3.6. A domain object model for the example application (adopted from [15])

In general, conceptual objects represent a user’s understanding of the usage. Pro-
vision of task specification with conceptual objects is important for the users to under-
stand and agree on their tasks. Conceptual objects are often aggregations from real

Calculate period

Check availability Check room

Check reservation

jog

Fic. 3.7. A conteztual link model for the ‘Check availability’

things in the domain by reorganizing information provided by these things.However, it
is difficult to discover the information for the restructuring and reorganization using
an inside-out perspective, as proposed by [12]. Modelling conceptual objects cer-
tainly provides an effective way for this. On the other hand, conceptual objects help
UT designers to concentrate on towards goal-based presentation.

3.4. Domain object model. A domain model represents the understanding
of domain-imposed requirements from a system’s perspective. In ADOI, A domain
model does not contain objects explicitly related to user tasks. In other words, the
domain model comprises pure objects in the subject world. Fig. 3.6 shows the domain
model in the example application.

The benefit of using a pure domain model is to reuse and share it among different
applications in the same domain since these applications can be envisioned for different
requirements. In other words, it facilitates the development of domain ontology [4]
for the purpose of interoperability between the applications.

3.5. Contextual link model. It is important to understand and identify ex-
isting relationships from the usage world to the subject world for tracing domain
features. This means that the specified tasks for the envisioned system in the use
cases have to be mapped to corresponding domain features.

ADOI attempts to specify the relationships in a declarative way by a contextual-
link model. A contextual link maps a user task defined on the conceptual objects
to a collection of semantic operations defined on the domain objects. The role of
contextual links can be two-fold: tracing domain objects that are relevant to tasks;
and identifying operations over domain objects that may be performed by the tasks.

In this moment, we do not consider how a task invokes corresponding operations
(synchronous, or asynchronous) and how the operations will be performed (sequential,
or concurrent). These how questions are delayed until the design time.

For example, Fig. 3.7 specifies a contextual link, which map the ‘ check availabil-
ity’ task to three operations. The contextual link identifies not only the operations,
but also a ‘period’ object that does not exist in the domain model. In fact, the con-
textual link model can be used as a means for reasoning about why a domain object
is required, and what are its attributes.

3.6. Architectural model. The role of an architectural model for contextual
development is to act as a means to deliver knowledge about user tasks to the sys-
tem design, as we mentioned earlier. Fig. 3.8 presents the assumed knowledge space
realized by the ADOI architectural model. The space is composed of two subspaces:

1. Functional space. Functional space represents knowledge about the control
and process of domain-specific information, and about the other non-human active
agents.

2. Interaction space. Interaction space covers knowledge about the presentation
and control of human-specific concepts.

The dimensions in each subspace are independent of each other. This is a nec-
essary condition for a declarative specification. For example, if a shared information
space is used both for the functional knowledge and the interaction knowledge, as
proposed by [15], the dialogue cannot be independent of the behaviour and, thus, the
behaviour dimension has to be reified in terms of the particular characteristics of the
dialogue.

The shared dimension between the two subspaces is the concept dimension of the
interaction space and the behaviour dimension of the functional space. The dimen-
sion connects the two subspaces together by means of the process of human-specific
concepts through domain-specific information.

The knowledge space is a contextual extension to UML architectural framework
specified by the analysis profile [13]. In fact, the UML profile only contains the
functional space in the Fig. 3.8, reflecting a system-centred perspective.

ADOI architectural model defines six stereotypical classes:

1. Task-boundary classes. A task-boundary class is assigned to knowledge about
a user as a role with respect to both functional and non-functional aspects. Therefore,
it must facilitate a user to create user conceptual model [2] that represents the user’s
understanding of a system. Task-boundary classes model interaction between the
system and its human actors. They represent interaction contents that reflect the
presentation of the user’s concepts, and that request information from the user, rather
than abstractions of physical user-interface components [15].

2. Task-control classes. A task-control class is assigned to knowledge about
user tasks as multiple mapping relations with respect to functional respects. Task-
control classes are responsible for sequencing the interaction between the user and the
system on the task level, and for transferring information between task-boundary and
system-entities via task- entities. They often encapsulate special behaviour related to
user task, so that it isolates change of the structure of dialogue.

Interface Dialogue
e
O C

~ C\—»——«%i

—~

() Behaviour Concepts d\q
4 Information Presentati;n\(
Functional space Interaction space

Fic. 3.8. The ADOI knowledge space

1. Task-entity classes. A task-entity class is assigned to knowledge about a
conceptual object particular for the context of a task with respect to non-functional
aspects. Task-entity classes are responsible for the interoperability between task-
control and the system-control classes, such as temporal coordination and data ex-
change. They represent short-term information, and work as a working memory that
specifies the state of the system in terms meaningful of the users and independent of
the presentation of the system.

2. System-control classes. A system-control class is assigned to knowledge about

the contextual relationships between user tasks and system behaviours. System-
control classes often cope with complex control logic related to domain data. They
often encapsulate special behaviour related to system tasks, so that they isolate change
in the structure of data.

3. System-entity classes. A system-entity class is assigned to knowledge about
a domain model as a collection of entities with respect to the functional aspects.
System-entity classes represent information that is long-lived. Their role is much
similar to the ‘entity class’ in the UML analysis profile [13].

4. System-interface classes. A system-interface class is assigned to knowledge
about the relationships between the system and its environment. Their role is much
similar to the ‘interface-class’ in the UML analysis profile [13].

Fig. 3.9 demonstrates an artefact of architectural modelling for the ‘make reser-
vation’ use case in terms of the conceptual models built for the example application.
Objects in Fig. 3.9 are specialized from the stereotypical classes, e.g. the ‘Availabil-
ity” object is an instance of the task-entity class that realizes the corresponding user’s
concept, whereas the ‘Availability’ object is assigned to the functionality to present
the ‘Availability’.

Task-entity objects in Fig. 3.9, in fact, act as the mediator between the UT and the
FC. They realize the contextual links between task- control objects and system-entity
objects. The mediator works also as a short-term memory for domain-knowledge
delegation. For example, the ‘Availability’ object in Fig. 3.9 stores information related
to the possibilities of the preference. As a result, the ‘Availability’ object is first
checked for the preparation of the preference, avoiding the repetition of work that
might be time- consuming on the domain level.

Availability)
Availability browser ™ &,3@; Period
: ?
Room
Preference browser Preference Handler ™ .
) Reservation
< ™\
4 /\ Customer
Reservation editor Reservation —
™~ Mak
L\ 2
\ /‘ Stay

Make

Fic. 3.9. An analysis model for the ‘make reservation’ use case

4. Conclusions. In UCD conceptualization and contextualization should be
considered equally important for creating a usable and valid design solution. Models
in ADOI have been built in this way. Static and explicit concepts defined in those
models allow a declarative specification for the usage, and the integration of differ-
ent perspectives through the contextual linkage. A novel conceptualization-driven
architecture is provided with knowledge allocation with respect to functionality and
contextual linkage. Consequently, a seamless development with the integration of
different design approaches is systematically supported.

10

REFERENCES

Hua, Q., WaNG H., HEMMJE, M., Conceptual modelling for interaction design, Will appear in
the Proceedings of the 10th International HCI Conference. Crete, Greece(2003)

NORMAN, D., Cognitive engineering, In: Norman, D. and Draper, S (eds.): User centered
system design, Lawrence Erlbaum Associates, Hillsdale, NJ. (1986) 31-61.
HubpsoN, W, Towards unified models in user-centred and object- oriented design, In: M. van
Harmelen (eds.): Object Modeling and User Interface Design, Addison-Wesley (2000).
RoLLAND, C. AND PRAKASH, N.; From conceptual modelling to requirements engineering, An-
nals of Software Engineering, 10(2000) 151-176.

STARY, C., Contextual prototyping of user interfaces, proceedings of ACM Dis’00, (2000) 388-
395.

ISO/TC159, Human-centred design process for interactive systems, Report ISO 13407: 1999.
Geneva, Switzerland (1999).

Brum, B.1., Beyond programming, Oxford University, N.Y. 1996.

SHAW, M, GARLAN, D., Software architectures: perspectives on an emerging discipline, Pretice-
Hall, Englewood Cliffs, NJ, 1996.

JARKE, M. PoHL, K. AND ROLLAND, C., Establishing visions in context: towards a model of
requirements processes, Proc. 12th Intl. Conf. Information Systems, Orlando, F1, (1993).

A. COCKBURN, Structuring Use Cases with Goals, JOOP/ROAD 10(5) Sep’97 and 10(7)
Nov’97.

PUERTA, A. AND EINSENSTEIN, J., Towards a general computational framework for model-based
interface development systems, ACM CHI'97, (1997).

CouTAz, J. AND BALBO, S., Applications: A dimension space for user interface management
systems, The proceedings of ACM CHI'91, (1991) 27-32.

G. BoocH, ET AL., The Unified Modelling Language User Guide, Reading, MA: Addison-
Wesley, 1999.

CONSTANTINE, L., Use cases for essential modeling user interfaces, ACM interaction, 4 (1995)
34-46.

NuUNEs, N. AND CuUNHA, J. F.: WisboM, A software engineering method for small software
development companies, IEEE Software, September/October, (2000) 113-119.

