
Conceptual Modeling for Interaction Design

Qingyi Hua, Hui Wang, and Matthias Hemmje

Fraunhofer – IPSI
Dolivostr. 15, D-64293 Darmstadt, Germany

{hua, hwang, hemmje}@ipsi.fhg.de

Abstract

A usable interactive system provides its users with presentation and manipulation of useful
concepts for solving their problems at hand without becoming bogged down in accidental features
of user interface. It implicates that interaction design is directed by the acquisition and
representation of knowledge about the context of use in a way that can be traced back to the users’
problem-solving activity. In this paper we focus on conceptualization of that activity. The
conceptualization is characterized by a set of ontological terms that capture a continuum between
user tasks and problem domain in a declarative way, and by a framework of conceptual models
that describe a system on a very abstract level without being limited to particular design models.

1 Introduction

In HCI a task is defined as an activity performed to achieve a goal (Welie, Veer & Elens, 1998).
However, there is at least one other more or less parallel activity during the performance, that is,
the mental representation and processing of the problem to be solved at hand. Based on the beliefs
on the problem domain, the problem-solving activity generates the goal and intentions performing
the task in terms of Norman’s action theory (Norman, 1986). Users could distract their mental
effort from their working situations to the manipulation of the user interface if a system fails to
provide the relevant concepts to the problem-solving context. As a result, usability relies on the
system provides appropriate content at appropriate time during the process of problem solving.
The problem-solving activity relies on the knowledge structures supporting understanding
(schemas) and the mechanisms used to organize that knowledge (plans) (see (Robilland, 1999) for
a cognitive discuss). In AI terms, a problem solver requires two types of knowledge
(Chandrasekaran, Josephson, & Benjamins, 1998): domain factual knowledge (objects, events,
relations, processes, etc) and problem-solving knowledge about how to achieve various goals,
such as problem-solving methods. However, mental processing and representation differs from a
system description in many ways. For example, human can have semantically much richer, and
more complex schemas than the system, whereas the amount of knowledge that can be handled by
a human mind at any given time is limited to 5±2 chunks according to psychologists. As a result, it
is fundamental to develop a shared understanding between the users and designers according to the
context of use, such as the intended users, their tasks and environments.
Contextual development has been recognized to be crucial for meeting the demands of user-
centred systems design (Stary, 2000). Two categories of approaches can be found in HCI: task-
based and context-oriented. Task-based approaches, e.g. (Welie, et al., 1998), capture only the
hierarchical properties of tasks without memory reminding why the tasks are executed or
decomposed, whereas context-oriented ones, e.g. (Maguire, 2001), describe working situations

mailto:hemmje}@ipsi.fhg.de

without mental abstraction. However, users guide their tasks to be done by making plans. The
properties of plans are anticipation and simplification (Robilland, 1999): a heuristic nature without
a detail analysis of the situation, optimal use of memory by keeping only critical properties of
objects and events, and higher control level without details of the activity being processed.
In this paper, we present our initial results on conceptualization of knowledge about the context of
use. The purpose of the conceptualization is to develop a shared understanding and representation
of that knowledge between stakeholders. Section 2 introduces a set of ontological terms that
capture the conceptualization and that act as meta-knowledge for the knowledge acquisition from
a user’s perspective. Section 3 describes the conceptual models and demonstrates a case study.
The description of the system is done with the conceptual models on a very abstract level. On this
level, we talk of mental states instead of system states, of intentions instead of task
decompositions. Consequently, this level allows us to represent knowledge about the context of
use in a way that can be traced back to the users’ problem-solving ability. On the other hand, it
makes possible provide opportunities and constraints for interaction and system design without
being limited to a special set of design models. Finally the conclusions are presented in section 4.

2 Ontological assumptions of problem-solving activity

The notion of ontology represents knowledge shared and reused in some domain of interest. The
essence of the notion is in (Gruber, 1993): an ontology is an explicit specification of a
conceptualization. A conceptualization makes some assumptions about concepts and their
relationships in the domain to be modelled. In AI and software engineering, for instance, objects,
events, processes, and relations are general terms for modelling domain knowledge. Recently
ontological assumptions have been also proposed for modelling problem-solving methods in AI.
For instance, (Chandrasekaran, et al., 1998) defines an ontology of problem solver and an
ontology of methods for establishing assumptions of the knowledge structures used by a problem
solver and of the control mechanisms to use those structures.
However, the difference between the human mind and the system lies in the capability of
knowledge processing and representation. To make the system usable, the phenomenon of
knowledge chunking has to be taken into account. Chunks are general and do not refer to the
information content of knowledge. This implicates that they are a measure of the unrelated
knowledge that can be processed naturally (Robilland, 1999). The phenomenon illustrates that the
problem-solving knowledge used by the human mind is organized on a more abstract level than
the level of domain knowledge. For the mediation of the two different levels, the system has to
organize contextual information about task-performing states, or domain states to meet the users’
needs. In the remainder of this section, we define a set of primitive terms in order to match the
elicitation and representation of the needs.
Term 2.1. Domain object/action/state. We apply the traditional OOA definition for the three terms
in general. In particular, we define that a (problem) domain state is a set of values of state
variables representing objects in the problem domain.
Term 2.2. Task object. A task object is supposed to match a mental representation describing a
problem domain state that a user believes or pursues. Task objects can have the same abstract
mechanism and form as domain objects. For example, a task object can be specialized as an entity,
relationship, or event depending on whether it is autonomous, subordinate, or instantaneous,
respectively. Task objects are essential for the problem-solving activity because they are a way of
representing the user’s knowledge about the problem domain from a view of task. In other words,
they represent the content of tasks to be undertaken. In the domain of a hotel, for example, domain
objects can be room, guest list and so on, whereas a guest may have particular concepts about the
domain states, such as availability, preference and so on, when she wants to make a reservation. It

is also desirable to anticipate possibilities, to determine the current situation, and to remember
working history by use of task objects. As a result, task objects provide information about how to
represent knowledge about problem domain on the mental level.
Term 2.3. Task operation. A task operation is supposed to match a mental operation representing
an input-output relation over task objects. Task operation applications determine state transitions
in the domain of task objects. Like a domain action, task operations can be characterized by
pre/post conditions, and trigger conditions that capture the elementary state transitions. A task
operation can be specialized as required or requested dependent on if it changes domain states of
task objects and generates an event or only queries the task domain, respectively.
Term 2.4. Problem state. The process of problem solving creates, uses and changes a number of
task objects referring the states of the affairs. A problem state is a set of values of state variables
(e.g. knowledge chunks) representing these task objects. Problem states include information about
current goals. Problem states also include all information generated during the process of problem
solving, such as beliefs, desires and so on.
Term2.5. Goal. A goal is supposed to match a mental representation that the user has an attitude
describing an expected problem state (e.g. ‘Make reservation’ is the goal in the above example).
Goals are realized by intentions and evaluations. The important point is that a goal is some desired
end state to be wished by the user, rather than a state to be reached after successful execution of a
task in traditional task analysis. As a result, traditional analysis cannot answer if a goal can be
achieved, and how failures can be recovered.
Term 2.6. Intention/Evaluation. An intention (or evaluation) is supposed to match a mental thread
of problem solving and of maintaining problem states. A mental thread performs a set of required
or requested task operations dependent on whether it is an intention realizing a current goal or an
evaluation establishing a belief of current domain state, respectively. In general, mental threads
change problem states, which in turn, invoke a set of domain actions to complete intentions or
evaluations. Intentions (or evaluation) are characterized by trigger and stop conditions. As shown
in Fig. 1a, intention/evaluation is significant in that it represents a basic unit of problem-solving
knowledge, and establishes a continuum between the different views of task and domain.
 (Jarke, Pohl & Rolland, 1994) identifies three worlds and the possible relationships that need to
be understood and modelled (Fig. 1b). For the sake of usability, we argue that the joint part of the
three worlds has to be taken into account, that is, the states of affairs among the worlds (Fig. 1c).
We have identified the joint part between the usage world and the subject world by the definition
of the term problem state.

3 Conceptual models on the knowledge level

A conceptual model is a set of concepts and their relationships, which embodies the view captured
by a set of ontological terms with respect to some domain of interest. The view of the proposed

Intentions/
Evaluation

Goal realized by

Problem
State maintains

Task Operation

pe
rfo

rm
s

Task
Object

uses

Action

perfor m
s

Domain
Object

uses

Usage
World

Subject
World

System
World

Usage fit
Intentional

representation

Usage
World

Subject
World

System
WorldState

a) the proposed ontology b) the relationships among the worlds c) the joint part of the worlds
Figure 1: the proposed ontology and its relationship with the three worlds

framew
how to
As show
the fra
concept
modelli
in the fr
Model
and thre

•

•

•

Model
tasks, a
represen
Model
domain
the mo
purpose
In rema
assume
the arte
model
exampl
The mo
elicitati
repeated
this thin
get) me
are on
answer
Business
Model

Intention Model

Task Model

Domain Model

Mental Level
Components

Domain Level
Components

Architecture ModelConceptual Models

User InterfaceIntention
Specification

Task
Requirements

Action
Requirements

Goal

Figure 2: the proposed framework of conceptual models
ork is intention-dominated, that is, it is concerned with what goals to achieve instead of
achieve these goals.

n in Fig. 2, the business and architectural models (the dashed-line boxes) do not belong to
mework. The business process model provides contextual information for the
ualization, whereas the architecture model is used for the realization of the conceptual
ng. Because of the limited space, in the remainder we will not mention them. The models
amework are described as follows.
3.1. Intention model. An intentional model consist of a goal the model intends to achieve
e interrelated parts:

Intention specification. Intention specification is a cluster of intentions/evaluations
without sequencing, in which intentions and evaluations realize the goal, and validate
whether the goal is achieved, respectively. For interaction design, it provides
information how to organize dialogue and presentation of user interface towards the
current goal it realized.
Task requirements. Task requirements are a collection of task operations invoked by the
intention specification without sequencing. Task sequencing is determined by intention
specification. For interaction design, task requirements determine the actions that a user
may initiate.
Domain requirements. Domain requirements are a collection of actions invoked by the
intention specification without sequencing. Domain requirements in general are
independent of task requirements, although they are indispensable for system design.

3.2. Task model. A task model is a collection of task objects that represent the content of
nd that represent all information that needs to be presented. Computationally, the model
ts a working memory that could be seen as the extension of the users’ working memory.

3.3. Domain mode. A domain model is a collection of domain objects that represent
 factual knowledge, and it is therefore independent of the task model. In our framework,
del represents only the underlying information that a system should maintain for the
 of functionality, and it is therefore, usually unperceivable by the users.
inder of this section we demonstrate a case study of hotel reservation. For simplicity, we
 that the users’ needs are to make a room reservation. The modelling process starts from
facts of business process modelling. In general, the artefacts include a domain process
and a domain model. For the sake of the limited space, only the domain model in our
e is show in Fig. 3a.
delling process includes two complementary steps of intention/evaluation analysis and task
on by analysis of the artefacts of business modelling and by asking the users questions
ly: What do you intend to do when doing this thing? What do you expect to get from doing
g? The what in general means the content of task (i.e. task objects) and the do (and the
ans task operations. The users can usually answer such questions because these questions
the same level as their plans of guiding their tasks to be done. For example, a user may
that ‘I want to know if a room is available in this period as I am making a call to this

h
‘
r
s
i
F
n
o
e
s

4

W
k
k
T
o
c
m

R

C
P
G
A
J
r
M
5
N
s
R
A
S
3
W
D

Ckeck-availability

Query-
availability

Check-period

Room Reservation

eck-room

n/evaluation specification

depends on
ch

ec
ks

 makes

determines

checks

de
te

rm
ine

s

Availability

Clerk

PreferenceReservation

1 0..*
1

1..*

1 1

1 1..*

1..*

1..*

Hotel Guest

Reservation

Bill

Room

Know-availability

Availability

Call-hotel

Hotel

Ch

a) the domain model b) the task model c) an intentio

Figure 3: a part of conceptual models in the case study

otel’. From this answer we can find a task object ‘availability’ with properties ‘room’, ‘hotel’ and
period’, and an operation ‘query-availability’. The properties represent a set of state variables
elevant to the domain knowledge in Fig. 3a. It is notable that we aim at eliciting which intentions
hould be realized, rather than exploring how these intentions are realized by control knowledge as
t does in traditional task analysis.
ig. 3b depicts all the task objects and their relationships by repeating the steps of the process. It is
ot too difficult to establish the relationships between the identified intentions/evaluations (and the
perations), and domain actions because each task object, more precisely, its properties make
xplicit references to domain objects, or their properties. For example, fig. 3c shows a
pecification for the intention of knowing availability and the evaluation of checking availability.

 Conclusions

e are not developing a brand-new method, but reusing the traditional OOA technology on the
nowledge level. The ontological terms we defined in this paper emphasize acquisition of
nowledge about the content of task domain, rather than about control mechanisms in that domain.
he continuum defined by these terms represents a declarative specification to mediate activities
f problem solving and task performing. On the knowledge level, the proposed conceptual models
an represent the requirements for a system in the same state space as the task knowledge, which
akes possible build the system to delegate user tasks on the same level.

eferences

handrasekaran, B. Josephson, J. & Benjamins, R. (1998). Ontology of Tasks and Methods. In the
roceedings of KAW'98, Voyager Inn, Banff, Alberta, Canada.
ruber, T. R., (1993). A translation approach to portable ontology specification. Knowledge
cquisition, 6(2), 199-221

arke, M. Pohl, K. and Rolland, C. (1993). Establishing visions in context: towards a model of
equirements processes, Proc. 12th Intl. Conf. Information Systems, Orlando, Fl,

aguire, M. (2001). Methods to support human-centred design. Int. J. Human-Computer Studies,
5, 587- 634
orman, D. (1986). Cognitive engineering. In: Norman, D. and Draper, S (Ed.): User centered

ystem design (pp. 31-61), Lawrence Erlbaum Associates, Hillsdale, NJ.
obilland, N. (1999). The role of knowledge in software development. Communication of the
CM, 42 (1), 87-92
tary, C. (2000). Contextual prototyping of user interfaces. In the Proceedings of ACM DIS’00,
88-395
elie, M., Veer, G., & Elens, A. (1998). An ontology for task world models. In the proceedings of
SV-IS’98, Spriger Verlag, 57-70

	Introduction
	Ontological assumptions of problem-solving activity
	Conceptual models on the knowledge level
	Conclusions

